期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

International Journal of Medicine and Data. 2025; 9: (2) ; 113-122 ; DOI: 10.12208/j.ijmd.20250045.

Tongue thickness in older adults with sarcopenia and visual impairment: a pilot study
先导研究肌少症与视力缺失老年患者的舌头厚度

作者: 赵达燊1 *, 黄颕思2 *, 黄家强4, 叶志刚3, 伍可怡2, 陈绰彤4, 陈心妍4, 张君仪4, 舒妍卉4, 谭舜馨4, 谢佩珊4, 叶智斌3

1 中国香港盲人辅导会院舍职业治疗 香港

2 中国香港理工大学中文及双语学系言语治疗所 香港

3 中国香港东华学院医疗及健康科学学院(职业治疗) 香港

4 中国香港理工大学康复治疗科学系(职业治疗) 香港

*通讯作者: 赵达燊,单位: 中国香港盲人辅导会院舍职业治疗 香港;黄颕思,单位: 中国香港理工大学中文及双语学系言语治疗所 香港;

发布时间: 2025-05-27 总浏览量: 143

摘要

肌少症是一种进行性肌肉疾病,其特征是骨骼肌质量(Skeletal Muscle Mass)和功能的渐进性、广泛性丧失,并且与身体功能障碍和机能衰退密切相关。当肌少症表现为舌肌萎缩(进一步体现为舌体厚度减少)时,舌骨上肌群肌力的减弱可能导致吞咽困难,并增加误吸风险,这种情况可能危及生命。目前,肌少症的常用筛查方法包括问卷评估、诊断量表(diagnostic grids)或预测公式(prediction equations),这些工具通常采用"排除法"测试——即通过比对多项参数来筛除无肌少症风险的人群。骨骼肌质量(SMM)和体重被视为最可靠且常用的评估参数,可通过生物电阻抗分析(BIA)仪获取。由于肌少症对吞咽功能的不良影响,亟需采用一种更具成本效益且普适性的舌体厚度测量方法用于肌少症筛查。本研究采用横断面设计,使用3.5MHz凸面探头测量颏舌骨肌至舌背距离(三次测量均值作为舌厚值),发现舌厚每减少0.1cm,误吸风险显著增加15%(Nakamorietal., 2020)。本研究旨在通过超声波测量舌体厚度,探究肌少症与舌体厚度的相关性,并探索推广超声波技术在肌少症筛查中的应用。研究目的本研究旨在比较健康受试者与罹患肌少症的老年患者之间的舌体厚度差异。研究方法本研究采用便利抽样法招募35名男女受试者。受试者符合入选标准,包括肌少症组(n=15,来自香港港盲人辅导会)和健康对照组(n=25,来自香港社区)。使用MIRUKO®便携式超声波设备(日本东京Nippon Sigmax公司)测量受试者舌体厚度,以颏舌骨肌下端中点至舌背的三次测量平均值作为舌体厚度值。另外采用InBodyS10(韩国首尔InBody公司)进行生物电阻抗分析(BIA)测定肌肉质量、骨骼肌质量及骨骼肌质量指数(SMI)。本研究采用欧洲老年肌少症工作组(EWGS)制定的骨骼肌质量指数(SMI)和握力标准为7.4kg/m²和22kg(Bahat G等,2016)。研究结果在肌少症患者(N=15)中,舌体厚度与骨骼肌质量(r=0.643,p=0.01)及骨骼肌指数(r=0.564,p=0.028)三者呈显着正相关。舌体厚度的接受者操作特征曲线显示,4.145cm的舌体厚度对肌少症的筛查敏感度为80%,特异度为70%,曲线下面积为0.737(p=0.018)。基于舌体厚度预测骨骼肌质量的回归模型分析显示舌体厚度可解释35.7%的骨骼肌质量变异(F=7.223,df=1,p=0.019)。合并身高、体重、舌体厚度、舌肌力量及唇肌力量的回归模型可解释95.1%的骨骼肌质量变异(F=19.367,df=7,p<0.001)但仅身高与体重的系数在模型中具有统计学意义。结论与展望本研究表明,在肌少症患者當中,舌体厚度与骨骼肌质量及体重呈显着正相关,展现出舌体厚度可能可作为肌少症的筛查指标,超声波技术或可应用于肌少症筛查。早期筛查有助于减少可避免的吞咽困难与误吸所致健康损害,并缓解肌少症对医疗系统造成的经济负担。此外,超声波测量舌体厚度技术有望用于监测肌少症老年患者的口腔运动训练及康复进程。

关键词: 肌少症;吞咽困难;超声波

Abstract

Sarcopenia is a progressive muscle disorder characterized by progressive and generalized loss of skeletal muscle mass and functions and it is strictly correlated with physical disability and functional decline. When sarcopenia presents itself as the atrophy of tongue muscles which is further manifested by a reduction of tongue thickness, the reduction of suprahyoid muscle strength may result in difficulties in swallowing and increased risks of aspiration, which can be fatal. Common screening approaches at sarcopenia include questionnaires, diagnostic grids, or prediction equations which comprise of “rule-out” tests that identify those who are not at risk of sarcopenia by comparing different parameters. SMM and bodyweight are regarded as the most reliable and common parameters and could be obtained by a bioelectrical impedance analysis (BIA) machine. The Iowa Oral Performance Instrument (IOPI) used as an intervention tool in measuring strength and endurance of tongue in healthy populations or disordered populations. Owing to the adverse impacts of sarcopenia on swallowing, there is a need for using a more cost-effective and universal method to measure tongue thickness for the screening of sarcopenia. This study aimed at measuring the tongue thickness using ultrasound, examining the correlation between sarcopenia and tongue thickness and generalizing the use of ultrasound in the screening of sarcopenia. Objectives The study aimed at comparing the tongue thickness between healthy subjects and older individuals with sarcopenia.
Methods A population-based sample of 35 male and female were recruited by convenience sampling. The sample met the selection criteria and was comprised of the sarcopenia group (n=15) who were recruited from the Kowloon Home for the Aged Blind and the healthy subject group (n=25) who were recruited in the community. The tongue thickness of the subjects was examined by the MIRUKO ® Portable Ultrasound (Nippon Sigmax Co. Ltd, Tokyo, Japan). The mean value of the distance between the midpoint of the lower end of the geniohyoid muscle to the tongue dorsum obtained from the three trials was considered to be the tongue thickness. Muscle mass, Skeletal Muscle Mass(SMM) and skeletal muscle index (SMI) were measured by bioelectrical impedance analysis (BIA) using InBody S10 (InBody Co. Ltd, Seoul, Korea). This study adopted the EWGS cut-off thresholds for skeletal muscle index (SMI) hand grip strength was 7.4 kg/m2 and 22 kg for females with sarcopenia. (Bahat G et al., 2016).
Results Receiver operating characteristic curve on the tongue thickness revealed that the tongue thickness at 4.145cm displayed the sensitivity and specificity to classify the sarcopenia at 80% and 70% respectively. The area under the curve at 0.737 with p = 0.018. In people with sarcopenia (N= 15), there were significant correlation between tongue thickness, the skeletal muscle mass (r = 0.643, p = 0.01) and skeletal muscle index (r = 0.564, p = 0.028). Regression model on the prediction of the SMM by the tongue thickness showed that the tongue thickness explained 35.7% of the SMM (F = 7.223, df =1, p = 0.019). We incorporated Height, Weight, Tongue thickness, Tongue strength and Lip strength into the regression model, which explained 95.1% of the SMM (F=19.367, df = 7, p<0.001). However, only the coefficient of height and weight were significant in the model.
Conclusion   and Future Implications Our findings suggested that tongue thickness had a positive and significant correlation with skeletal muscle mass and body weight. The results revealed that tongue thickness might be an indicator of sarcopenia, and hence ultrasound could be used in the screening of sarcopenia. Early screening may help to minimize the health consequences of dysphagia and aspiration that could otherwise be avoided and the economic burden sarcopenia has exerted on the healthcare system. In addition, the use of ultrasound in measuring tongue thickness has the potential to monitor the progress of oral-motor training and rehabilitation process of older individuals with sarcopenia.

Key words: Sarcopenia; Dysphagia; Ultrasound

参考文献 References

[1] Adams, V., Mathisen, B., Baines, S., Lazarus, C., & Callister, R. (2013). A Systematic Review and Meta-analysis of Measurements of Tongue and Hand Strength and Endurance Using the Iowa Oral Performance Instrument (IOPI). Dysphagia, 28(3), 350-369.

[2] Anker SD, Morley JE, von Haehling S. Welcome to the ICD-10 code for sarcopenia. J Cachexia Sarcopenia Muscle. 2016 Dec;7(5):512-514. doi: 10.1002/jcsm.12147. Epub 2016 Oct 17. PMID: 27891296; PMCID: PMC5114626.

[3] Ariya, C., Tohara, H., Nakagawa, K., Hara, K., Nakane, A., Yamaguchi, K., … & Minakuchi, S. (2019). Association between echo intensity of the tongue and its thickness and function in elderly subjects. Journal of Oral Rehabilitation, 46(7), 634-639. https://doi.org/10.1111/joor.12788

[4] Au, Chan, W. L. D., Tiu, K. L., Lee, K. B., Lee, W., & Chan, A. C. M. (2021). Prevalence of sarcopenia and the association of sarcopenia, premorbid factors, early functional outcome and 1-year mortality in Hong Kong Chinese fragility hip fracture patients. Journal of Orthopaedics, Trauma and Rehabilitation, 28, 221049172199598. 

[5] Bahat G, Tufan A, Tufan F, Kilic C, Akpinar TS, Kose M, Erten N, Karan MA, Cruz-Jentoft AJ. (2016). Cut-off points to identify sarcopenia according to European Working Group on Sarcopenia in Older People (EWGSOP) definition. Clin Nutr, 35(6), 1557-1563. 

[6] Castro, J., Livino de Carvalho, K., Silva, P. E., Fachin-Martins, E., Babault, N., Marqueti, R. de, & Durigan, J. L. (2019). Intra- and inter-rater reproducibility of ultrasound imaging of patellar and quadriceps tendons in critically ill patients. PLOS ONE, 14(6).

[7] Chen, Y., Chen, P., Wang, Y., Wang, T., & Han, D. (2020). Decreased swallowing function in the sarcopenic elderly without clinical dysphagia: a cross-sectional study. BMC Geriatrics, 20(1). https://doi.org/10.1186/s12877-020-01832-0

[8] Cruz-Jentoft, & Sayer, A. A. (2019). Sarcopenia. The Lancet (British Edition), 393(10191), 2636-2646. 

[9] Drukker, L., Noble, J. A., & Papageorghiou, A. T. (2020). Introduction to artificial intelligence in ultrasound imaging in obstetrics and gynecology. Ultrasound in Obstetrics & Gynecology, 56(4), 498-505.

[10] Food and Health Bureau. (2020). Primary Care Development in Hong Kong: Strategy Document. https://www.fhb.gov.hk/download/press_and_publications/otherinfo/101231_primary_care/e_strategy_doc.pdf

[11] Fukuoka, Y., Narita, T., Fujita, H., Morii, T., Sato, T., Sassa, M. H., & Yamada, Y. (2019). Importance of physical evaluation using skeletal muscle mass index and body fat percentage to prevent sarcopenia in elderly Japanese diabetes patients. Journal of diabetes investigation, 10(2), 322-330.

[12] G. (2016). Tongue interface based on surface EMG signals of suprahyoid muscles. ROBOMECH Journal, 3(1). 

[13] Ho, A. W. H., Lee, M. M. L, Chan, E. W., Ng, H. M., Lee, C. W., Ng, W. S., & Wong, S. H. (2016). Prevalence of pre-sarcopenia and sarcopenia in Hong Kong Chinese geriatric patients with hip fracture and its correlation with different factors. Hong Kong Medical Journal = Xianggang Yi Xue Za Zhi, 22(1), 23-29. 

[14] Huber, & Kirchengast, S. (2009). Gender and age differences in lean soft tissue mass and sarcopenia among healthy elderly. Anthropologischer Anzeiger, 67(2), 139-151. 

[15] IBM Corp. (2019). IBM SPSS Statistics for Windows, Version 26.0. Armonk, NY: IBM Corp.

[16] Jager, J., Putnick, D. L., & Bornstein, M. H. (2017). More than just convenient: The scientific merits of homogenous convenience samples. Monographs of the Society for Research in Child Development, 82(2), 13-30.

[17] Janssen, Shepard, D. S., Katzmarzyk, P. T., & Roubenoff, R. (2004). The Healthcare Costs of Sarcopenia in the United States. Journal of the American Geriatrics Society (JAGS), 52(1), 80-85. 

[18] Lahav, Y., Rosenzweig, E., Heyman, Z., Doljansky, J., Green, A., & Dagan, Y. (2009). Tongue base ultrasound: A diagnostic tool for predicting obstructive sleep apnea. Annals of Otology, Rhinology & Laryngology, 118(3), 179-184. 

[19] Li, G., Huang, Y., Wu, J., Leong, C., & Cheng, C. (2025). Swallowing therapy effects on oral muscle mass, tongue function, swallowing, and nutrition in stroke patients with dysphagia. Neurorehabilitation, 56(2), 164-174. 

[20] McFerrin, C. A., Malmstrom, T. K., Morley, J. E., & Bourey, R. E. (2018). Sarcopenia, Frailty, and Cognitive Dysfunction in Adults with Untreated Sleep Apnea. Sleep (New York, N.Y.), 41(suppl_1), 274-274.

[21] Mourtzakis, & Wischmeyer, P. (2014). Bedside ultrasound measurement of skeletal muscle. Current Opinion in Clinical Nutrition and Metabolic Care, 17(5), 389-395. 

[22] Nakamori, M., Imamura, E., Fukuta, M., Tachiyama, K., Kamimura, T., Hayashi, Y., … & Wakabayashi, S. (2020). Tongue thickness measured by ultrasonography is associated with tongue pressure in the japanese elderly. Plos One, 15(8), e0230224. 

[23] Nijholt, Scafoglieri, A., Jager-Wittenaar, H., Hobbelen, H., & van der Schans, C. P. (2017). The reliability and validity of ultrasound to quantify muscles in older adults: a systematic review. Journal of Cachexia, Sarcopenia and Muscle, 8(5), 702-712. 

[24] Ogawa, N., Mori, T., Fujishima, I., Wakabayashi, H., Itoda, M., Kunieda, K., ... & Ogawa, S. (2018). Biofeedback ultrasound to measure swallowing muscle mass and quality in older patients with sarcopenic dysphagia. Journal of the American Medical Directors Association, 19(6), 516-522.

[25] Panara, K., Ramezanpour Ahangar, E., & Padalia, D. (2021). Physiology, Swallowing. In StatPearls. StatPearls Publishing.

[26] Preston, J. L., McAllister Byun, T., Boyce, S. E., Hamilton, S., Tiede, M., Phillips, E., Rivera-Campos, A., & Whalen, D. H. (2017). Ultrasound Images of the Tongue: A Tutorial for Assessment and Remediation of Speech Sound Errors. Journal of visualized experiments : JoVE, (119), 55123. 

[27] Sanz‐París, A., Gonzalez-Fernandez, M., Río, L., Ferrer-Lahuerta, E., Monge-Vazquez, A., Losfablos-Callau, F., … & Arbones-Mainar, J. (2021). Muscle thickness and echogenicity measured by ultrasound could detect local sarcopenia and malnutrition in older patients hospitalized for hip fracture. Nutrients, 13(7), 2401. 

[28] Sasaki, M., Onishi, K., Stefanov, D., Kamata, K., Nakayama, A., Yoshikawa, M., & Obinata, G. (2016). Tongue interface based on surface EMG signals of suprahyoid muscles. ROBOMECH Journal, 3(1). 

[29] Shen, Y. T., Chen, L., Yue, W. W., & Xu, H. X. (2021). Artificial intelligence in ultrasound. European Journal of Radiology, 109717.

[30] Solomon, N. (2004). Assessment of tongue weakness and fatigue. International Journal of Orofacial Myology, 30(1), 8-19. 

[31] Tagami, Y., Fujimoto, K., Goto, T., Suito, H., Nagao, K., & Ichikawa, T. (2022). Measurement of ultrasonic echo intensity predicts the mass and strength of the tongue muscles in the elderly. Journal of Oral Science, 64(1), 44-48.

[32] Tamura, F., Kikutani, T., Tohara, T., Yoshida, M., & Yaegaki, K. (2012). Tongue thickness relates to nutritional status in the elderly. Dysphagia, 27(4), 556-561. 

[33] Tournadre, Vial, G., Capel, F., Soubrier, M., & Boirie, Y. (2019). Sarcopenia. Joint, Bone, Spine : Revue Du Rhumatisme, 86(3), 309-314. 

[34] Wang, S. H., Keenan, B. T., Wiemken, A., Zang, Y., Staley, B., Sarwer, D. B., Torigian, D. A., Williams, N., Pack, A. I., & Schwab, R. J. (2020). Effect of weight loss on upper airway anatomy and the apnea-Hypopnea index. the importance of tongue fat. American Journal of Respiratory and Critical Care Medicine, 201(6), 718-727.

[35] Winiker, K., Burnip, E., Gozdzikowska, K., Hernandez, E. G., Hammond, R., Macrae, P., Thomas, P., & Huckabee, M.-L. (2021). Ultrasound: Reliability of a pocket-sized system in the assessment of swallowing. Journal of Speech, Language, and Hearing Research, 64(8), 2928-2940.

[36] Yeates, Molfenter, S. M., & Steele, C. M. (2008). Improvements in tongue strength and pressure-generation precision following a tongue-pressure training protocol in older individuals with dysphagia: three case reports. Clinical Interventions in Aging, 3(4), 735-747. 

[37] Yeung, S., Reijnierse, E. M., Pham, V. K., Trappenburg, M. C., Lim, W. K., Meskers, C., & Maier, A. B. (2019). Sarcopenia and its association with falls and fractures in older adults: A systematic review and meta-analysis. Journal of cachexia, sarcopenia and muscle, 10(3), 485-500. 

[38] Zhang, Q., Kang, L., Wang, J. Y., Xi, H., Yu, P. L., Zhang, C. T., Tuo, X. P., ... Liu, X. H., Geriatrics Branch of Chinese Medical Association, & Editorial Committee of Chinese Journal of Geriatrics. (2024). Lao nian ren ji shao zheng men zhen guan li gui fan Zhongguo zhuan jia gong shi (2024 ban) [Chinese expert consensus on the management of sarcopenia in outpatient clinics for the elderly (2024 edition)]. Zhonghua Lao Nian Yi Xue Za Zhi [Chinese Journal of Geriatrics], *43*(12), 1511–1517. 

[39] ZHANG Yiliang, GAO Mingliang, HUANG Lei, SHI Ruzhu, TONG Yong. Parameter Analysis and Uncertainty Evaluation of Dual Energy X-Ray Bone Density Phantom Calibration Device[J]. Metrology Science and Technology, 2025, 69(3): 60-66. 

引用本文

赵达燊, 黄颕思, 黄家强, 叶志刚, 伍可怡, 陈绰彤, 陈心妍, 张君仪, 舒妍卉, 谭舜馨, 谢佩珊, 叶智斌, 先导研究肌少症与视力缺失老年患者的舌头厚度[J]. 国际医学与数据杂志, 2025; 9: (2) : 113-122.