参考文献 References
[1] Nowell P C. The clonal evolution of tumor cell populations [J]. Science, 1976, 194(4260): 23-8.
[2] Turajlic S, Sottoriva A, Graham T, et al. Resolving genetic heterogeneity in cancer [J]. Nat Rev Genet, 2019, 20(7): 404-16.
[3] Waddington C H. The epigenotype. 1942 [J]. Int J Epidemiol, 2012, 41(1): 10-3.
[4] Lister R, Pelizzola M, Dowen R H, et al. Human DNA methylomes at base resolution show widespread epigenomic differences [J]. Nature, 2009, 462(7271): 315-22.
[5] Buenrostro J D, Giresi P G, Zaba L C, et al. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position [J]. Nat Methods, 2013, 10(12): 1213-8.
[6] Johnson D S, Mortazavi A, Myers R M, et al. Genome-wide mapping of in vivo protein-DNA interactions [J]. Science, 2007, 316(5830): 1497-502.
[7] Fuhrmann M, Gockel N, Arizono M, et al. Super-Resolution Microscopy Opens New Doors to Life at the Nanoscale [J]. J Neurosci, 2022, 42(45): 8488-97.
[8] Franek M, Kilar A, Fojtík P, et al. Super-resolution microscopy of chromatin fibers and quantitative DNA methylation analysis of DNA fiber preparations [J]. J Cell Sci, 2021, 134(15).
[9] Xu J, Ma H, Jin J, et al. Super-Resolution Imaging of Higher-Order Chromatin Structures at Different Epigenomic States in Single Mammalian Cells [J]. Cell Rep, 2018, 24(4): 873-82.
[10] Xie L, Dong P, Chen X, et al. 3D ATAC-PALM: super-resolution imaging of the accessible genome [J]. Nat Methods, 2020, 17(4): 430-6.
[11] Farhy C, Hariharan S, Ylanko J, et al. Improving drug discovery using image-based multiparametric analysis of the epigenetic landscape [J]. Elife, 2019, 8.
[12] Alvarez-Kuglen M, Ninomiya K, Qin H, et al. ImAge quantitates aging and rejuvenation [J]. Nat Aging, 2024, 4(9): 1308-27.
[13] Chen F, Li X, Bai M, et al. Visualizing epigenetic modifications and their spatial proximities in single cells using three DNA-encoded amplifying FISH imaging strategies: BEA-FISH, PPDA-FISH and Cell-TALKING [J]. Nat Protoc, 2025, 20(1): 220-47.
[14] Xue J, Chen F, Su L, et al. Pairwise Proximity-Differentiated Visualization of Single-Cell DNA Epigenetic Marks [J]. Angew Chem Int Ed Engl, 2021, 60(7): 3428-32.
[15] Kint S, Van Criekinge W, Vandekerckhove L, et al. Single cell epigenetic visualization assay [J]. Nucleic Acids Res, 2021, 49(8): e43.
[16] Ren X, Deng R, Zhang K, et al. Single-Cell Imaging of m(6) A Modified RNA Using m(6) A-Specific In Situ Hybridization Mediated Proximity Ligation Assay (m(6) AISH-PLA) [J]. Angew Chem Int Ed Engl, 2021, 60(42): 22646-51.
[17] Mao D, Tang X, Zhang R, et al. Multichrome encoding-based multiplexed, spatially resolved imaging reveals single-cell RNA epigenetic modifications heterogeneity [J]. Nat Commun, 2025, 16(1): 958.
[18] Fan S, Li X, Liu H, et al. Molecule Differentiation Encoding Microscopy to Dissect Dense Biomolecules in Cellular Nanoenvironments Below Spatial Resolution [J]. Angew Chem Int Ed Engl, 2025: e202425136.
[19] Chen F, Bai M, Cao X, et al. Cellular macromolecules-tethered DNA walking indexing to explore nanoenvironments of chromatin modifications [J]. Nat Commun, 2021, 12(1): 1965.
[20] Lu T, Ang C E, Zhuang X. Spatially resolved epigenomic profiling of single cells in complex tissues [J]. Cell, 2022, 185(23): 4448-64.e17.
[21] Zhang T, Yang H, Yu Q, et al. Dynamic, Single-cell Monitoring of RNA Modifications Response to Viral Infection Using a Genetically Encoded Live-cell RNA Methylation Sensor [J]. Angew Chem Int Ed Engl, 2025, 64(9): e202418003.
[22] Muñoz-López Á, Buchmuller B, Wolffgramm J, et al. Designer Receptors for Nucleotide-Resolution Analysis of Genomic 5-Methylcytosine by Cellular Imaging [J]. Angew Chem Int Ed Engl, 2020, 59(23): 8927-31.
[23] Stepanov A I, Shuvaeva A A, Putlyaeva L V, et al. Tracking induced pluripotent stem cell differentiation with a fluorescent genetically encoded epigenetic probe [J]. Cell Mol Life Sci, 2024, 81(1): 381.
[24] Feng Y, Wang Y, Wang X, et al. Simultaneous epigenetic perturbation and genome imaging reveal distinct roles of H3K9me3 in chromatin architecture and transcription [J]. Genome Biol, 2020, 21(1): 296.