期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

International Journal of Medicine and Data. 2025; 9: (1) ; 5-12 ; DOI: 10.12208/j.ijmd.20250002.

Progress in artificial intelligence research on coronary artery plaques
人工智能在冠状动脉斑块检测和风险评估中的应用进展

作者: 王韦, 徐建华, 牡丹 *

南京鼓楼医院集团仪征医院 江苏南京

*通讯作者: 牡丹,单位:南京鼓楼医院集团仪征医院 江苏南京;

发布时间: 2025-02-27 总浏览量: 30

摘要

本综述探讨了AI在冠状动脉斑块检测和风险评估中的应用,强调了AI技术在提高诊断准确性和效率方面的关键作用。传统的影像学方法对易损斑块的识别的精确度和效率上存在一定挑战。近年来,人工智能(AI)的介入为这一领域带来了新的突破。AI在冠状动脉斑块检测中的应用,特别是在冠状动脉CTA图像后处理技术中,极大地提高了诊断的时间效率和准确性,通过自动分割图像,辅助医生识别高危斑块,使得无症状低危人群的风险筛查更加精准。AI不仅能检测斑块,还能对其成分进行深入分析,有效提高了斑块识别和评估的准确性。AI在预测冠状动脉疾病中的应用尤为突出,通过构建和验证风险预测模型对冠心病患者进行风险评估。在实际临床中,已经有成功案例显示AI技术能显著缩短分析时间,并提高诊断一致性。然而,其应用仍存在一些局限性,如受限于数据集的规模和质量。在冠状动脉疾病领域,AI的精准医疗应用前景广阔,能够实现个性化的早期检测、准确分析和有效干预,但需进一步优化数据集和算法以实现更高水平的预防和治疗。

关键词: 冠状动脉斑块;人工智能;深度学习;图像分割;风险评估模型;心血管疾病

Abstract

This review explores the application of AI in coronary plaque detection and risk assessment, emphasizing the key role of AI technology in improving diagnostic accuracy and efficiency. There are certain challenges in the accuracy and efficiency of traditional imaging methods for identifying vulnerable plaques. In recent years, the intervention of artificial intelligence (AI) has brought new breakthroughs to this field. The application of AI in coronary artery plaque detection, especially in the post-processing technology of coronary CTA images, greatly improves the time efficiency and accuracy of diagnosis. By automatically segmenting images, it assists doctors in identifying high-risk plaques, making the risk screening of asymptomatic low-risk populations more accurate. AI can not only detect plaques but also conduct in-depth analysis of their components, effectively improving the accuracy of plaque recognition and evaluation. The application of AI in predicting coronary artery disease is particularly prominent, by constructing and validating risk prediction models to assess the risk of coronary heart disease patients. In actual clinical practice, successful cases have shown that AI technology can significantly shorten analysis time and improve diagnostic consistency. However, its application still has some limitations, such as being restricted by the size and quality of the dataset. In the field of coronary artery disease, the precision medicine application of AI has broad prospects, which can achieve personalized early detection, accurate analysis, and effective intervention. However, further optimization of datasets and algorithms is needed to achieve higher levels of prevention and treatment.

Key words: Coronary artery plaque; artificial intelligence; Deep learning; Image segmentation; Risk assessment model; Cardiovascular disease

参考文献 References

[1] 王平, 龙晓宙, 黄刚, 等. 冠状动脉CT成像人工智能辅助诊断的应用价值[J]. 甘肃医药, 2020, (2): 122-125.

[2] 李桂芬, 赵妍, 周建国, 等. 人工智能识别冠脉CTA图像技术的应用[J]. 养生保健指南, 2021, (41):

[3] 王雪燕, 鲍海华, 温生宝, 等. 冠状动脉AI诊断系统在高海拔地区CHD患者评估中的应用价值[J]. 重庆医学, 2024, 53(5):

[4] 赵古月, 尚靳, 侯阳. 人工智能在冠状动脉CT血管成像的应用进展[J]. 山东大学学报(医学版), (12):

[5] Opincariu D, Benedek T, Chițu M, et al. From CT to artificial intelligence for complex assessment of plaque-associated risk.[J]. The international journal of cardiovascular imaging, 2020, 36(12): 

[6] Heon Lee, Tilman Emrich, U. Joseph Schoepf, et al. Artificial Intelligence in Cardiac CT: Automated Calcium Scoring and Plaque Analysis[J]. Current Cardiovascular Imaging Reports, 2020, 13(11): 

[7] Gudigar A, Nayak S, Samanth J, et al. Recent Trends in Artificial Intelligence-Assisted Coronary Atherosclerotic Plaque Characterization.[J]. International journal of environmental research and public health, 2021, 18(19): 

[8] 刘春伟, 胡越成, 张敬霞, 等. 从腔内影像学进展探讨冠状动脉易损斑块的临床意义[J]. 心血管病学进展, 2022, (10):

[9] 谢丽响, 胡春峰. 基于冠状动脉CT血管成像的冠状动脉斑块风险分层的研究进展[J]. 中国临床医生杂志, 2023, (11):

[10] Gaba P, Gersh BJ, Muller J, et al. Evolving concepts of the vulnerable atherosclerotic plaque and the vulnerable patient: implications for patient care and future research.[J]. Nature reviews. Cardiology, 2022.

[11] 陈心怡, 赵国力, 尹德录. 冠状动脉腔内影像学评估斑块性质的研究进展[J]. 临床心血管病杂志, 2023, (09):

[12] 何路平, 于波. 冠状动脉腔内影像技术在高危斑块识别领域的研究现状及展望[J]. 中国循证心血管医学杂志, 2021, (11): 1396-1397,1403. 

[13] Yang S, Koo BK, Narula J. Interactions Between Morphological Plaque Characteristics and Coronary Physiology: From Pathophysiological Basis to Clinical Implications.[J]. JACC. Cardiovascular imaging, 2022, 15(6): 

[14] Alghrairi M, Sulaiman N, Mutashar S. Health Care Monitoring and Treatment for Coronary Artery Diseases: Challenges and Issues.[J]. Sensors (Basel, Switzerland), 2020, 20(15).

[15] 胡小丽, 向守洪, 胡荣慧, 等. 人工智能在冠状动脉CT血管成像后处理和诊断报告的初步评估[J]. 国际放射医学核医学杂志, 2020, (1): 5-10. 

[16] Muscogiuri G, Volpato V, Cau R, et al. Application of AI in cardiovascular multimodality imaging.[J]. Heliyon, 2022, 8(10): 

[17] Covas P, De Guzman E, Barrows I, et al. Artificial Intelligence Advancements in the Cardiovascular Imaging of Coronary Atherosclerosis.[J]. Frontiers in cardiovascular medicine, 2022, 9.

[18] Mugdha Joshi, Diana Patricia Melo, David Ouyang, et al. Current and Future Applications of Artificial Intelligence in Cardiac CT[J]. Current Cardiology Reports, 2023, 25(3).

[19] 陈远兴, 韩韦钰, 赵然尊. 基于人工智能的冠状动脉易损斑块腔内影像学研究进展[J]. 海南医学, 2023, 34(3):

[20] 赵艳红, 苏治祥, 张晓文, 等. 人工智能在冠状动脉CT血管成像对冠心病诊断效能的研究[J]. 实用放射学杂志, 2023, 39(4): 557-560.

[21] 张梅舜, 蔡浩轩, 彭意春. 人工智能冠状动脉CT血管成像在冠心病诊断中的作用分析[J]. 心血管病防治知识(学术版), 2023, 13(21).

[22] Bang Jun Guo, Jiwoong Jason Jeong, Hong Yan Qiao, et al. Artificial intelligence in imaging of coronary artery disease: current applications and future perspective[J]. Chinese Journal of Academic Radiology, 2022, 5(1): DOI10.1007/s42058-022-00091-9.

[23] Choi A, Marques H, Kumar V, et al. Automated Artificial Intelligence Based Interpretation Of Coronary CTA: Plaque Volume, Plaque Characterization And High Risk Plaque Compared With Consensus Of Level III Expert Readers[J]. Journal of Cardiovascular Computed Tomography, 2020, 14(3).

[24] Cau R, Flanders A, Mannelli L, et al. Artificial intelligence in computed tomography plaque characterization: A review.[J]. European journal of radiology, 2021, 140.

[25] 陈卓, 依布拉音, 高颖, 等. SCI、TyG、AIP对冠状动脉粥样硬化性心脏病患病风险的预测模型建立和验证[J]. 联勤军事医学, 2023, (11):

[26] 王蔚然, 王蓉, 王更新, 等. 基于冠状动脉CT特征的机器学习技术评价冠状动脉粥样硬化斑块风险[J]. 中华老年多器官疾病杂志, 2021, (9): 702-706.

[27] Maragna R, Giacari CM, Guglielmo M, et al. Artificial Intelligence Based Multimodality Imaging: A New Frontier in Coronary Artery Disease Management.[J]. Frontiers in cardiovascular medicine, 2021, 8: 

[28] 黄伟莹. 人工智能在电子病案管理系统中的应用[J]. 中国数字医学, 15(4).

[29] 莫陶欣, 王丹, 李晨雄, 等. AI技术助力提升电子病历质量的实践与探讨[J]. 医院管理论坛, 2023, (11).

[30] Tariq A, Purkayastha S, Padmanaban GP, et al. Current Clinical Applications of Artificial Intelligence in Radiology and Their Best Supporting Evidence.[J]. Journal of the American College of Radiology : JACR, 2020, 17(11).

[31] Yin J, Ngiam KY, Teo HH. Role of Artificial Intelligence Applications in Real-Life Clinical Practice: Systematic Review.[J]. Journal of medical Internet research, 2021, 23(4).

[32] 国际全科前沿[J]. 中国全科医学, 2024, (13):

[33] 尹军祥, 黄鑫, 李苏宁, 等. 我国人工智能临床应用研究发展现状及建议[J]. 世界科技研究与发展, 2023, 45(2): 181-188.

[34] Varghese J. Artificial Intelligence in Medicine: Chances and Challenges for Wide Clinical Adoption.[J]. Visceral medicine, 36(6).

[35] 郝华. 浅议人工智能技术在医院临床医学中的应用研究[J]. 计算机产品与流通, 2020, 06: 155.

[36] Corti C, Cobanaj M, Marian F, et al. Artificial intelligence for prediction of treatment outcomes in breast cancer: Systematic review of design, reporting standards, and bias.[J]. Cancer treatment reviews, 2022, 108.

[37] 周良辅. 人工智能在临床医学的应用:现状、挑战和对策[J]. 中华脑科疾病与康复杂志:电子版, 12(3):

[38] Gurukripa N. Kowlgi, Fatima M. Ezzeddine, Suraj Kapa. Artificial Intelligence Applications to Improve Risk Prediction Tools in Electrophysiology[J]. Current Cardiovascular Risk Reports, 14(9).

[39] 梁羽, 岳林先, 曹文斌, 等. 基于计算机辅助诊断的人工智能在甲状腺TI-RADS分类中的临床应用价值[J]. 四川医学,2021,(2):127-131.

[40] 杨磊, 唐灿. 人工智能在乳腺癌超声诊断的应用价值[J]. 实用医学杂志, 2022, (1):

[41] Visco V, Ferruzzi GJ, Nicastro F, et al. Artificial Intelligence as a Business Partner in Cardiovascular Precision Medicine: An Emerging Approach for Disease Detection and Treatment Optimization.[J]. Current medicinal chemistry, 2021, 28(32).

[42] Rezayi S, R Niakan Kalhori S, Saeedi S. Effectiveness of Artificial Intelligence for Personalized Medicine in Neoplasms: A Systematic Review.[J]. BioMed research international, 2022, 2022.

[43] Vadapalli S, Abdelhalim H, Zeeshan S, et al. Artificial intelligence and machine learning approaches using gene expression and variant data for personalized medicine.[J]. Briefings in bioinformatics, 2022, 23(5).

[44] Quazi S. Artificial intelligence and machine learning in precision and genomic medicine.[J]. Medical oncology (Northwood, London, England), 39(8).

[45] Lorkowski J, Kolaszyńska O, Pokorski M. Artificial Intelligence and Precision Medicine: A Perspective.[J]. Advances in experimental medicine and biology, 2022, 1375.

[46] Daneshjou R, Brenner SE, Chen JH, et al. Precision Medicine: Using Artificial Intelligence to Improve Diagnostics and Healthcare.[J]. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, 2022, 27:

[47] Hanfstingl B. Future Objectivity Requires Perspective and Forward Combinatorial Meta-Analyses.[J]. Frontiers in psychology, 2022, 13.

[48] Thompson RA, Simpson JA, Berlin LJ. Taking perspective on attachment theory and research: nine fundamental questions.[J]. Attachment & human development, 2022, 24(5).

[49] Masara B, van der Poll JA, Maaza M. A nanotechnology-foresight perspective of South Africa.[J]. Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2021, 23(4).

[50] Bassaganya-Riera J, Berry EM, Blaak EE, et al. Goals in Nutrition Science 2020-2025.[J]. Frontiers in nutrition, 2020, 7.

引用本文

王韦, 徐建华, 牡丹, 人工智能在冠状动脉斑块检测和风险评估中的应用进展[J]. 国际医学与数据杂志, 2025; 9: (1) : 5-12.