参考文献 References
[1] Kojima, T., S.S. Gu, M. Reid, et al. Large language models are zero-shot reasoners[J]. Advances in neural information processing systems, 2022. 35: p. 22199-22213.
[2] OpenAI, R. Gpt-4 technical report. arxiv 2303.08774[J]. View in Article, 2023. 2(5).
[3] Mihalache, A., R.S. Huang, M.M. Popovic, et al. ChatGPT-4: an assessment of an upgraded artificial intelligence chatbot in the United States Medical Licensing Examination[J]. Medical Teacher, 2024. 46(3): p. 366-372.
[4] Mihalache, A., M.M. Popovic, and R.H. Muni. Performance of an artificial intelligence chatbot in ophthalmic knowledge assessment[J]. JAMA ophthalmology, 2023. 141(6): p. 589-597.
[5] Kung, T.H., M. Cheatham, A. Medenilla, et al., Performance of ChatGPT on USMLE: potential for AI-assisted medical education using large language models[J]. PLoS digital health, 2023. 2(2): p. e0000198.
[6] Waisberg, E., J. Ong, M. Masalkhi, et al., GPT-4 and Ophthalmology Operative Notes[J]. Ann Biomed Eng, 2023. 51(11): p. 2353-2355.
[7] Singh, S., A. Djalilian, and M.J. Ali, ChatGPT and Ophthalmology: Exploring Its Potential with Discharge Summaries and Operative Notes[J]. Semin Ophthalmol, 2023. 38(5): p. 503-507.
[8] Cascella, M., J. Montomoli, V. Bellini, et al., Evaluating the Feasibility of ChatGPT in Healthcare: An Analysis of Multiple Clinical and Research Scenarios[J]. J Med Syst, 2023. 47(1): p. 33.
[9] Leong, Y.-Y., C. Vasseneix, M.T. Finkelstein, et al., Artificial intelligence meets neuro-ophthalmology[J]. The Asia-Pacific Journal of Ophthalmology, 2022. 11(2): p. 111-125.
[10] Shemer, A., M. Cohen, A. Altarescu, et al., Diagnostic capabilities of ChatGPT in ophthalmology[J]. Graefes Arch Clin Exp Ophthalmol, 2024. 262(7): p. 2345-2352.
[11] Salvagno, M., F.S. Taccone, and A.G. Gerli, Can artificial intelligence help for scientific writing?[J]. Crit Care, 2023. 27(1): p. 75.
[12] 惠延年.人工智能聊天机器人助力眼科和科学论文写作[J]. 国际眼科杂志, 2024. 24(01): p. 1-4.
[13] Chen, J.S., W.C. Lin, S. Yang, et al., Development of an Open-Source Annotated Glaucoma Medication Dataset From Clinical Notes in the Electronic Health Record[J]. Transl Vis Sci Technol, 2022. 11(11): p. 20.
[14] Bernstein, I.A., Y.V. Zhang, D. Govil, et al., Comparison of ophthalmologist and large language model chatbot responses to online patient eye care questions[J]. JAMA network open, 2023. 6(8): p. e2330320-e2330320.
[15] Goodman, R.S., J.R. Patrinely, C.A. Stone, et al., Accuracy and reliability of chatbot responses to physician questions[J]. JAMA network open, 2023. 6(10): p. e2336483-e2336483.
[16] Smith, A.L., F. Greaves, and T. Panch, Hallucination or Confabulation? Neuroanatomy as metaphor in Large Language Models[J]. PLOS Digit Health, 2023. 2(11): p. e0000388.
[17] Wang, C., J. Ong, C. Wang, et al., Potential for GPT Technology to Optimize Future Clinical Decision-Making Using Retrieval-Augmented Generation[J]. Ann Biomed Eng, 2024. 52(5): p. 1115-1118.
[18] Khoje, M. Navigating Data Privacy and Analytics: The Role of Large Language Models in Masking conversational data in data platforms. in 2024 IEEE 3rd International Conference on AI in Cybersecurity (ICAIC). 2024. IEEE.
[19] Brown, T.B., Language models are few-shot learners[J]. arXiv preprint arXiv:2005.14165, 2020.
[20] Ouyang, L., J. Wu, X. Jiang, et al., Training language models to follow instructions with human feedback[J]. Advances in neural information processing systems, 2022. 35: p. 27730-27744.
[21] Vaswani, A., Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017.
[22] Mihalache, A., R.S. Huang, M.M. Popovic, et al., ChatGPT-4: An assessment of an upgraded artificial intelligence chatbot in the United States Medical Licensing Examination[J]. Med Teach, 2024. 46(3): p. 366-372.
[23] Teebagy, S., L. Colwell, E. Wood, et al., Improved Performance of ChatGPT-4 on the OKAP Examination: A Comparative Study with ChatGPT-3.5[J]. J Acad Ophthalmol (2017), 2023. 15(2): p. e184-e187.
[24] Haddad, F. and J.S. Saade, Performance of ChatGPT on Ophthalmology-Related Questions Across Various Examination Levels: Observational Study[J]. JMIR Med Educ, 2024. 10: p. e50842.
[25] Mihalache, A., R.S. Huang, M.M. Popovic, et al., Accuracy of an Artificial Intelligence Chatbot's Interpretation of Clinical Ophthalmic Images[J]. JAMA Ophthalmol, 2024. 142(4): p. 321-326.
[26] Read-Brown, S., M.R. Hribar, L.G. Reznick, et al., Time Requirements for Electronic Health Record Use in an Academic Ophthalmology Center[J]. JAMA Ophthalmol, 2017. 135(11): p. 1250-1257.
[27] Waisberg, E., J. Ong, M. Masalkhi, et al., GPT-4 to document ophthalmic post-operative complications[J]. Eye (Lond), 2024. 38(3): p. 414-415.
[28] Anderson, R.L., M. de Los Angeles Ramos Cadena, and J.S. Schuman, Glaucoma Diagnosis: from the Artisanal to the Defined[J]. Ophthalmol Glaucoma, 2018. 1(1): p. 3-14.
[29] Delsoz, M., Y. Madadi, H. Raja, et al., Performance of ChatGPT in Diagnosis of Corneal Eye Diseases[J]. Cornea, 2024. 43(5): p. 664-670.
[30] Delsoz, M., H. Raja, Y. Madadi, et al., The use of ChatGPT to assist in diagnosing glaucoma based on clinical case reports[J]. Ophthalmology and Therapy, 2023. 12(6): p. 3121-3132.
[31] Leong, Y.Y., C. Vasseneix, M.T. Finkelstein, et al., Artificial Intelligence Meets Neuro-Ophthalmology[J]. Asia Pac J Ophthalmol (Phila), 2022. 11(2): p. 111-125.
[32] Rojas-Carabali, W., C. Cifuentes-González, X. Wei, et al., Evaluating the diagnostic accuracy and management recommendations of ChatGPT in uveitis[J]. Ocular immunology and inflammation, 2024. 32(8): p. 1526-1531.
[33] Liu, X., J. Wu, A. Shao, et al., Uncovering Language Disparity of ChatGPT on Retinal Vascular Disease Classification: Cross-Sectional Study[J]. J Med Internet Res, 2024. 26: p. e51926.
[34] Milad, D., F. Antaki, J. Milad, et al., Assessing the medical reasoning skills of GPT-4 in complex ophthalmology cases[J]. Br J Ophthalmol, 2024. 108(10): p. 1398-1405.
[35] Hu, X., A.R. Ran, T.X. Nguyen, et al., What can GPT-4 do for Diagnosing Rare Eye Diseases? A Pilot Study[J]. Ophthalmol Ther, 2023. 12(6): p. 3395-3402.
[36] Waisberg, E., J. Ong, M. Masalkhi, et al., Google's AI chatbot "Bard": a side-by-side comparison with ChatGPT and its utilization in ophthalmology[J]. Eye (Lond), 2024. 38(4): p. 642-645.
[37] Tao, B.K., N. Hua, J. Milkovich, et al., ChatGPT-3.5 and Bing Chat in ophthalmology: an updated evaluation of performance, readability, and informative sources[J]. Eye (Lond), 2024. 38(10): p. 1897-1902.
[38] Owens, B., How Nature readers are using ChatGPT[J]. Nature, 2023. 615(7950): p. 20.
[39] Dahmen, J., M.E. Kayaalp, M. Ollivier, et al., Artificial intelligence bot ChatGPT in medical research: the potential game changer as a double-edged sword[J]. Knee Surg Sports Traumatol Arthrosc, 2023. 31(4): p. 1187-1189.
[40] Haman, M. and M. Školník, Using ChatGPT to conduct a literature review[J]. Account Res, 2024. 31(8): p. 1244-1246.
[41] Singh, S. and S. Watson, ChatGPT as a tool for conducting literature review for dry eye disease[J]. Clinical & Experimental Ophthalmology, 2023. 51(7).
[42] Kuehn, B.M., More than one-third of US individuals use the Internet to self-diagnose[J]. Jama, 2013. 309(8): p. 756-7.
[43] Nadarzynski, T., O. Miles, A. Cowie, et al., Acceptability of artificial intelligence (AI)-led chatbot services in healthcare: A mixed-methods study[J]. Digit Health, 2019. 5: p. 2055207619871808.
[44] Lyons, R.J., S.R. Arepalli, O. Fromal, et al., Artificial intelligence chatbot performance in triage of ophthalmic conditions[J]. Can J Ophthalmol, 2024. 59(4): p. e301-e308.
[45] Zandi, R., J.D. Fahey, M. Drakopoulos, et al., Exploring Diagnostic Precision and Triage Proficiency: A Comparative Study of GPT-4 and Bard in Addressing Common Ophthalmic Complaints[J]. Bioengineering (Basel), 2024. 11(2).
[46] Alqudah, A.A., A.J. Aleshawi, M. Baker, et al., Evaluating accuracy and reproducibility of ChatGPT responses to patient-based questions in Ophthalmology: An observational study[J]. Medicine (Baltimore), 2024. 103(32): p. e39120.
[47] Tan, D.N.H., Y.C. Tham, V. Koh, et al., Evaluating Chatbot responses to patient questions in the field of glaucoma[J]. Front Med (Lausanne), 2024. 11: p. 1359073.
[48] Rasmussen, M.L.R., A.C. Larsen, Y. Subhi, et al., Artificial intelligence-based ChatGPT chatbot responses for patient and parent questions on vernal keratoconjunctivitis[J]. Graefes Arch Clin Exp Ophthalmol, 2023. 261(10): p. 3041-3043.
[49] Ferro Desideri, L., J. Roth, M. Zinkernagel, et al., "Application and accuracy of artificial intelligence-derived large language models in patients with age related macular degeneration"[J]. Int J Retina Vitreous, 2023. 9(1): p. 71.
[50] Yılmaz, I.B.E. and L. Doğan, Talking technology: exploring chatbots as a tool for cataract patient education[J]. Clin Exp Optom, 2024: p. 1-9.
[51] Anguita, R., C. Downie, L. Ferro Desideri, et al., Assessing large language models' accuracy in providing patient support for choroidal melanoma[J]. Eye (Lond), 2024.
[52] Tailor, P.D., L.A. Dalvin, J.J. Chen, et al., A Comparative Study of Responses to Retina Questions from Either Experts, Expert-Edited Large Language Models, or Expert-Edited Large Language Models Alone[J]. Ophthalmol Sci, 2024. 4(4): p. 100485.
[53] Biswas, S., N.S. Logan, L.N. Davies, et al., Assessing the utility of ChatGPT as an artificial intelligence‐based large language model for information to answer questions on myopia[J]. Ophthalmic and Physiological Optics, 2023. 43(6): p. 1562-1570.
[54] Lim, Z.W., K. Pushpanathan, S.M.E. Yew, et al., Benchmarking large language models' performances for myopia care: a comparative analysis of ChatGPT-3.5, ChatGPT-4.0, and Google Bard[J]. EBioMedicine, 2023. 95: p. 104770.
[55] Ong, J., N. Kedia, S. Harihar, et al., Applying large language model artificial intelligence for retina international classification of diseases (ICD) coding[J]. Journal of Medical Artificial Intelligence, 2023. 6.
[56] Zhao, H., Q. Ling, Y. Pan, et al., Ophtha-llama2: A large language model for ophthalmology[J]. arXiv preprint arXiv:2312.04906, 2023.
[57] Wang, C., J. Ong, C. Wang, et al., Potential for GPT technology to optimize future clinical decision-making using retrieval-augmented generation[J]. Annals of Biomedical Engineering, 2024. 52(5): p. 1115-1118.
[58] Xu, P., X. Chen, Z. Zhao, et al., Evaluation of a digital ophthalmologist app built by GPT4-V (ision)[J]. medRxiv, 2023: p. 2023.11. 27.23299056.
[59] 5Waisberg, E., J. Ong, M. Masalkhi, et al., Automated ophthalmic imaging analysis in the era of generative pre-trained transformer-4[J]. The Pan-American Journal of Ophthalmology, 2023. 5(1): p. 50.