摘要
本研究深入探讨了电子健康记录(EHR)与机器学习技术在抑郁症预测与诊断领域的融合应用。EHR数据为抑郁症的识别提供了至关重要的线索,而机器学习技术则能够精准地提取这些线索中的关键特征,从而显著提升预测的准确性。尽管研究人员已经成功开发出多种抑郁症识别模型,但仍不可避免地面临数据质量参差不齐和隐私保护等方面的挑战。针对这些挑战,本文详细讨论了数据稀疏性、类别不平衡性以及特征选择与提取等关键问题,并提出了相应的解决方案。在此基础上,本研究充分利用EHR数据集和深度学习技术,成功构建了一个抑郁症预测与诊断模型。该模型不仅预测准确率达到了85%,诊断准确率更是高达90%,为抑郁症患者提供了个性化的治疗方案。本研究充分展示了电子健康记录与机器学习在抑郁症预测与诊断中的巨大潜力,为未来的相关研究提供了有力的支持和参考。
关键词: 电子健康记录;机器学习;抑郁症
Abstract
This study delves into the integration of electronic health record (EHR) and machine learning techniques in the field of depression prediction and diagnosis. EHR data provides crucial clues for depression identification, while machine learning techniques can precisely extract key features from these clues, thus significantly improving the accuracy of prediction. Although researchers have successfully developed a variety of depression recognition models, they still inevitably face challenges in terms of variable data quality and privacy protection. To address these challenges, key issues such as data sparsity, category imbalance, and feature selection and extraction are discussed in detail in this paper, and corresponding solutions are proposed. On this basis, this study makes full use of EHR datasets and deep learning techniques to successfully construct a depression prediction and diagnosis model. The model not only achieves a prediction accuracy of 85%, but also a diagnosis accuracy of 90%, providing personalised treatment plans for depressed patients. This study fully demonstrates the great potential of electronic health records and machine learning in depression prediction and diagnosis, and provides strong support and reference for future related research.
Key words: Electronic health record; Machine learning; Depression
参考文献 References
[1] Nemesure, Matthew D., et al. "Predictive modeling of depression and anxiety using electronic health records and a novel machine learning approach with artificial intelligence." Scientific reports 11.1 (2021): 1980.
[2] Meng, Yiwen, et al. "Bidirectional representation learning from transformers using multimodal electronic health record data to predict depression." IEEE journal of biomedical and health informatics 25.8 (2021): 3121-3129.
[3] Zhang, Yiye, et al. "Development and validation of a machine learning algorithm for predicting the risk of postpartum depression among pregnant women." Journal of affective disorders 279 (2021): 1-8.
[4] 张恩赐.基于机器学习的老年抑郁症的分类研究[J].[2024-07-19].
[5] 赵圆圆.基于机器学习的抑郁症电子病历时间事件信息抽取研究[D].北京工业大学[2024-07-19].
[6] Hochman, Eldar, et al. "Development and validation of a machine learning‐based postpartum depression prediction model: A nationwide cohort study." Depression and anxiety 38.4 (2021): 400-411.
[7] Wu, Chi-Shin, et al. "Using text mining to extract depressive symptoms and to validate the diagnosis of major depressive disorder from electronic health records." Journal of affective disorders 260 (2020): 617-623.
[8] 李晓虹,孙源鸿,刘启健,等.一种基于机器学习的抑郁症评级系统及方法:202210334156[P][2024-07-19].
[9] 李博文,李娟.机器学习在抑郁症辅助诊断中的应用探究进展[J].数字技术与应用, 2023, 41(11):51-53.
[10] 李欣,范青.机器学习在抑郁症患者面部特征研究中的应用进展[J].上海交通大学学报:医学版, 2022, 42(1):6.
[11] 刘丹,叶婧仪,李玲.基于机器学习的抑郁症特征提取与实现[J].实验技术与管理, 2022(004):039.
[12] 王春晖.基于多维度机器学习的抑郁倾向预测[J].[2024-07-19].
[13] 刁云恒,王慧颖,董娇,等.机器学习在抑郁症辅助诊断中的应用进展[J].中国医学物理学杂志, 2022(002):039.
[14] Su, Chang, et al. "Machine learning for suicide risk prediction in children and adolescents with electronic health records." Translational psychiatry 10.1 (2020): 413.
[15] Tsui, Fuchiang R., et al. "Natural language processing and machine learning of electronic health records for prediction of first-time suicide attempts." JAMIA open 4.1 (2021): ooab011.
[16] Su, Chang, et al. "Machine learning for suicide risk prediction in children and adolescents with electronic health records." Translational psychiatry 10.1 (2020): 413.